The Orientation of Free-radical Addition to Olefins

By J. GIBB, M. J. PETERS, J. M. TEDDER,* J. C. WALTON, and K. D. R. WINTON (Department of Chemistry, The Purdie Building, The University, St. Andrews, Fife)

Summary The rate and orientation of addition of heptafluoropropyl radicals to a series of fluoro-olefins in the gas phase has been determined by a competitive method.

THE photochemical addition of heptafluoropropyl iodide to fluoroethylenes has been investigated in the gas phase using the experimental method described previously.¹ olefins the substituent has virtually no effect on the rate of addition. Only with 1,1-difluoroethylene and 3,3,3-trifluoropropene does there appear to be appreciable retardation. It seems probable that this is largely a polar effect influencing attack by the electrophilic trichloromethyl radical. The best interpretation of these results so far comes from the use of localisation energies calculated from

TABLE 1

The addition of heptafluoropropyl radicals to olefins in the gas phase

 $\log A$ in $1 \mod^{-1} \operatorname{s}^{-1} E$ in kcal \mod^{-1}

Addition			Addition			Addition		
to $CH_2 =$	$\log A$	E	to $CFH =$	$\log A$	E	to $CF_2 =$	$\log A$	Ε
$CH_2 = CH_2$	7.5ª	2.0*	$CFH = CH_2$	6.9	5.4	$CF_2 = CH_2$	6.0	9.2
$CH_2 = CHF$	7.1	$3 \cdot 1$				$CF_2 = CFH$	7.8	5.8
$CH_2 = CF_2$	$7 \cdot 2$	3.9	$CFH = CF_2$	7.8	4.1	-		

^a Projected figures (others relative to this).

Accurate measurements of C_6F_{14} could not be made so the results in Table 1 are competitive and have been put on an absolute scale by projecting a rate constant for the addition of C_3F_7 radicals to ethylene from data for other radicals.²

The very striking feature of these results is their similarity to our previous data for trichloromethyl radicals.^{3,4} There is a marked decrease in rate for addition to CFH= compared with addition to $CH_2=$, and a still greater decrease in rate for addition to $CF_2=$. It can be seen again that substituents on the carbon atom to which the radical becomes attached have a very big effect on the activation energy, whereas substituents on the carbon atom, where the odd electron is located in the initial adduct, only have a second-order influence.

Some measure of this second-order influence can be obtained from the now greatly extended data for the addition of trichloromethyl radicals to the $CH_2 =$ end of some substituted ethylenes (Table 2). For the first six

- ² Cf. inter alia, J. M. Sangster and J. C. J. Thynne, Trans. Faraday Soc., 1969, 65, 2110.
 ³ J. M. Tedder and J. C. Walton, Proc. Chem. Soc., 1964, 420.
 ⁴ J. M. Tedder and J. C. Walton, Trans. Faraday Soc., 1967, 63, 2678.
 ⁵ J. M. Tedder and J. C. Walton, Progr. Reaction Kinetics., 1967, 4, 55.

TABLE 2

Rate data for the addition of trichloromethyl radicals to the $CH_2 =$ end of same unsymmetric olefins

log A in 1 m	ol-1 s-1	E in kcal mol ⁻¹		
Olefin	$\log A$	E	Reference	
$CH_2 = CH_2$	6.5	$3 \cdot 2$	3,4	
$CH_2 = CHCl$	7.0	$3 \cdot 4$		
$CH_2 = CHF$	6.4	3.3	3,4	
$CH_2 = CHCN$	$7 \cdot 2$	3.3	this work	
$CH_2 = CHCH_3$	$7 \cdot 2$	3.4	5	
$CH_2 = CFCH_3$	6.8	$3 \cdot 2$	5	
$CH_2 = CF_2$	6.7	4.6	3,4	
$CH_{2} = CHCF_{2}$	7.4	4 ⋅8	this work	

extended Hückel theory with an additional parameter to allow for the electrophilic nature of the radical.⁵

(Received, June 8th, 1970; Com. 886.)

¹ J. M. Tedder and J. C. Walton, Trans. Faraday Soc., 1964, 60, 1769.